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Fig. 1: Spatial-temporal reasoning in a lifelong learning setting. Using language instructions and high-dimensional sensor data (e.g., point clouds), the robot
completes a task through spatial-temporal reasoning. Over its lifetime, the robot progressively learns from experiences, such as failure cases, to adapt to new
environments and eventually tackle lifelong tasks.

I. INTRODUCTION

For robots to function as home assistants or caregivers, they
must solve sequential manipulation tasks that require spatial-
temporal reasoning and process high-dimensional sensor data
as input. For example, as shown in Fig. 1, when assisting with
preparing clothing for the next day, a robot must understand
spatial relationships among clothes, a drawer, and a counter.
Temporal reasoning requires retaining the memory of past
objects and employing a future prediction module. If asked to
retrieve grey socks inside a drawer, the robot must remember
the grey socks’ location, recognize that opening the drawer
is necessary before grasping the socks, and predict how the
socks will move based on diverse robot skills.

A key challenge in this domain is connecting sensory
input to a unified representation that supports spatial-temporal
reasoning for sequential manipulation tasks. Recent works [1,
2, 3, 4, 5] have addressed this by learning latent space
dynamics models for model-based control, but predict state
changes on small timescales. Conversely, task and motion
planning (TAMP) addresses long-horizon tasks through high-
level symbolic planning and low-level geometric reasoning.
However, TAMP methods typically rely on explicit 3D object
models [6, 7, 8, 9, 10] and symbolic operators with predefined
effects [11, 7, 8, 9, 10, 12], limiting their applicability to
real-world scenarios with high-dimensional, partial-view point
clouds and complex, hard-to-predefine object interactions.

My research aims to bridge this gap by developing a latent

representation that integrates spatial-temporal reasoning
with sensory data. This representation captures both geomet-
ric and symbolic effects of actions within a shared latent
space, enabling robots to perform complex, long-horizon
manipulation tasks in real-world environments. Fig. 2
provides a high-level overview of the proposed framework.

II. PAST AND ONGOING WORK

Long-horizon planning with learned latent dynamics for
sequential manipulation. For robots to fully integrate into hu-
man environments and assist in daily life, they must solve se-
quential manipulation tasks requiring reasoning autonomously
about the long-term effects of their actions. To enable spatial-
temporal reasoning, I proposed a method to learn a latent
space that encodes object-centric information [13, 14, 15].
High-dimensional partial-view point clouds are encoded into
latent states, which a decoder translates these latent states into
geometric states (e.g., object poses) and symbolic states (e.g.,
pair-wise relations). A dynamics model then predicts future
latent states based on current latent states and parameterized
robot skills. Trained in simulation with random robot skills,
this system can be deployed on real-world robots (e.g., a 7DOF
Kuka Arm with a reflex hand [13, 14] or a custom mobile
base equipped with a Kinova arm and gripper [15]) to achieve
logical [13, 14] or language goals [15]. Experiments showed
that employing graph neural networks and transformers for
modeling latent space dynamics yielded the best performance
in reasoning about multiple interacting objects and generaliz-



ing to unseen scenarios. This success is attributed to the strong
inductive bias inherent in these architectures.

Reasoning about occluded objects with a video tracker.
Reasoning about occluded objects is essential for enabling
robots to assist effectively in real home environments. To
address this challenge, I proposed using an unsupervised
video object segmentation (UVOS) algorithm [16] capable of
tracking objects consistently while discovering new objects as
needed. Leveraging this tracking capability, I devised a method
to explicitly manage object-oriented memory in my work [17].
Specifically, I proposed two approaches to incorporate UVOS-
based memory into the latent space. The first augments latent
states by incorporating predictions for unobserved objects,
while the second enhances input point clouds by transform-
ing those of occluded objects using predicted poses. These
approaches enable robots to perform challenging real-world
tasks, including reasoning with occluded objects, novel objects
appearance, and object reappearance. Experimental results
demonstrated that the proposed methods outperform a baseline
model with implicit memory, validating the effective memory
capabilities of my framework.

Lifelong learning with failure cases. Robots often fail
in out-of-distribution scenarios, especially in lifelong learning
settings [18], where robots must continuously explore and
adapt to new environments. To address this challenge, I aim
to develop an approach that can detect failures, recover from
failures, and learn to reduce future failures.

In ongoing work, I propose a method for detecting failures
by evaluating predicted relations and recovering through re-
planning. However, replanning alone cannot resolve all fail-
ures, especially those arising from errors in the dynamics
prediction model. To mitigate this, I enhance the latent space
dynamics model by incorporating real-to-sim transfer and
generating additional simulation data. When a failure occurs in
the real world, the approach creates an approximate simulation
environment and generates targeted training data designed to
maximize information gain. This iterative process improves
the system’s robustness and adaptability, ultimately reducing
future failures. By continuously learning from failure cases,
the proposed system aims to autonomously tackle increasingly
complex real-world tasks throughout the robot’s lifetime, as
illustrated in Fig. 1.

III. FUTURE DIRECTIONS AND LONG-TERM VISION

First, I aim to integrate my latent space dynamics framework
with policy learning methods (e.g., diffusion policy [19]),
which have shown impressive capabilities in imitation learning
tasks. These include predicting sequential actions for receding-
horizon control, handling multi-modal action distributions,
and maintaining robustness to environmental changes and
perturbations. However, policy learning faces fundamental
limitations, such as difficulty reasoning in partially observ-
able environments and addressing geometric dependencies in
constrained environments. To overcome these challenges, I
propose a hierarchical system that interleaves latent space
dynamics with a low-level diffusion policy. The high-level

latent space dynamics model will reason about partial in-
formation and long-term geometric dependencies to generate
parameterized robot skills, while the low-level diffusion policy
will produce motor actions conditioned on these skills and
current visual input. This system will enable the robot to
perform long-horizon tasks in partially observable, geomet-
rically constrained environments while remaining robust to
environmental changes and disturbances. If a policy fails—for
example, attempting to grasp an apple but missing—the high-
level planner will detect the failure, replan the skill parameters,
and guide the policy to recover.
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Fig. 2: Planning using a memory module with sensory data as input.

Second, I plan to explore the use of multi-modal inputs for
reasoning about occluded objects in complex scenarios. Hu-
mans seamlessly integrate sensory inputs from vision, sound,
touch, and memory to reason about occluded objects. Inspired
by this, I aim to develop a framework that combines historical
data as memory, vision for current observations, tactile sensors
for touch, and microphones for sound. This framework will
learn an integrated latent space that encapsulates information
from these modalities, enabling robots not only to memorize
the locations of occluded objects but also to update their
memory dynamically using multi-modal inputs, as shown in
Fig. 2. I believe that reasoning about occluded objects through
multi-modal integration is a critical step toward developing
robots as reliable daily assistants.

My research goal is to develop robots capable of processing
multisensory inputs, encoding them into a latent space repre-
sentation, performing spatial-temporal reasoning, and continu-
ously adapting to new environments throughout their lifetimes.

To achieve this goal, my proposed approach conceptualizes
the robot as an embodied agent [20] within a lifelong learning
framework. Equipped with multisensory perception and an
initial set of skills, the robot can plan to achieve language
instructions through latent space planning. During deployment
in uncertain, real-world environments, the robot will detect and
correct failures, adapt its model to minimize future failures,
and incrementally expand its capabilities. This approach is
designed to be transferable across different embodiments,
enabling robots to adapt to diverse applications and environ-
ments. I believe this framework represents a significant step
toward understanding robots as embodied agents capable of
reasoning in uncertain, real-world environments. By shifting
the robotics community’s focus away from optimizing isolated
skills for specific tasks and embodiments, this work aims to
inspire a new generation of research on versatile, adaptive, and
embodied robotic agents.
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